Package: dipm 1.9
dipm: Depth Importance in Precision Medicine (DIPM) Method
An implementation by Chen, Li, and Zhang (2022) <doi:10.1093/bioadv/vbac041> of the Depth Importance in Precision Medicine (DIPM) method in Chen and Zhang (2022) <doi:10.1093/biostatistics/kxaa021> and Chen and Zhang (2020) <doi:10.1007/978-3-030-46161-4_16>. The DIPM method is a classification tree that searches for subgroups with especially poor or strong performance in a given treatment group.
Authors:
dipm_1.9.tar.gz
dipm_1.9.zip(r-4.5)dipm_1.9.zip(r-4.4)dipm_1.9.zip(r-4.3)
dipm_1.9.tgz(r-4.4-x86_64)dipm_1.9.tgz(r-4.4-arm64)dipm_1.9.tgz(r-4.3-x86_64)dipm_1.9.tgz(r-4.3-arm64)
dipm_1.9.tar.gz(r-4.5-noble)dipm_1.9.tar.gz(r-4.4-noble)
dipm_1.9.tgz(r-4.4-emscripten)dipm_1.9.tgz(r-4.3-emscripten)
dipm.pdf |dipm.html✨
dipm/json (API)
# Install 'dipm' in R: |
install.packages('dipm', repos = c('https://cli9.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 years agofrom:23475b35f9. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 07 2024 |
R-4.5-win-x86_64 | OK | Nov 07 2024 |
R-4.5-linux-x86_64 | OK | Nov 07 2024 |
R-4.4-win-x86_64 | OK | Nov 07 2024 |
R-4.4-mac-x86_64 | OK | Nov 07 2024 |
R-4.4-mac-aarch64 | OK | Nov 07 2024 |
R-4.3-win-x86_64 | OK | Nov 07 2024 |
R-4.3-mac-x86_64 | OK | Nov 07 2024 |
R-4.3-mac-aarch64 | OK | Nov 07 2024 |
Exports:dipmnode_dipmpmprunespmtree
Dependencies:clicolorspacefansifarverFormulaggplot2gluegtableinumisobandlabelinglatticelibcoinlifecyclemagrittrMASSMatrixmgcvmunsellmvtnormnlmepartykitpillarpkgconfigR6RColorBrewerrlangrpartscalessurvivaltibbleutf8vctrsviridisLitewithr